Paracetamol Poisoning & Overdose

- **Epidemiology**: 135,000 cases of poisoning/overdose per year → 3000 die before they present, 100,000 are admitted and 300 die in hospital (0.3%).
- **Routes of exposure** to poisons include oral, inhaled, percutaneous, ocular, IV, rectal and transvaginal.
- Most commonly overdose presents as deliberate self-poisoning using oral drugs, for example:
 - **Paracetamol** 43%
 - **NSAIDs** 6%
 - **Opioids** 15%
 - **Neuroleptics** 4%
 - **Benzodiazepines** 15%
 - **Household** 4%
 - **Ethanol** 13%
 - **SSRIs** 4%
 - **TCAs/related** 12%
 - **Antibiotics** 3%
 - **Aspirin** 7%
 - **Antiepileptics** 2%
- Deliberate overdoses often involve a MIXTURE of drugs → complex.
- Patients who self-poison have 30% 10yr mortality: either suicide or “natural” causes like alcohol or drugs.
- **Immediate management** of patients with suspected poisoning:
 - **A**: Conscious level is commonly reduced in overdose so neurological airway support may be lost.
 - **B**: ↑ anticholinergics, TCAs → metabolic acidosis, cannabis-induced PTX ↓ opiates.
 - **C**: Collapse may follow overdose of cardiac medications e.g. beta blockers, CCBs, or recreational drugs such as amphetamines, ecstasy, pipеридине, cannabis and cocaine.
 - **Adult life support**: Cardiac arrest is common and resuscitation should be prolonged. TCAs, phenytoin and cocaine have sodium channel blocking properties → use sodium bicarbonate.

- **Initial investigations**
 - **Examination**: skin colour and temperature (↑↑ cocaine, amphetamines, ecstasy), pulse rate and rhythm (↓↓ CCBs, digoxin, foxtail), respiratory rate, BP (↑↑ cocaine), pupils (miosis: opiates, organophosphates, mydriasis: sympathomimetics, anticholinergics), GCS, muscle tone and reflexes.
 - **Needle marks** (heroin, metamfetamine, ↑↑ risk of HIV and hepatitis).
 - Bilirubin levels peak or other pesticides, industrial chemicals, long time lying collapsed on floor.
 - **Bloods**: FBC, U+E, LFT, clotting, BM, ABG, tests for specific poisons, tox screen (rarely indicated).

- **Gastric decontamination** aims to reduce absorption of poisons taken by mouth when ingested poison carries significant risk. Ideally given within 1 hour. Protect airway in unconscious/drowsy patients.
 - **Induced emesis with syrup of ipecacuanha**
 - Very effective at producing vomiting but little effect on removal of poisons and may mask Sax.
 - Only appropriate → avoid in adults and those with poor gag reflexes.
 - **Complications include persistent vomiting, diarrhoea, lethargy, aspiration, Mallory-Weiss tear, gastric herniation and foetal abortion.**
 - **Gastric lavage/aspiration**
 - Suitable for very large/life-threatening overdoses and where activated charcoal is ineffective.
 - Protect airway with cuffed ET tube if gag reflex poor.
 - Contraindicated in hydrocarbon ingestion or caustic fluid ingestion, avoid in children.
 - Complications include gut perforation, aspiration, laryngospasm, water intoxication in children, dysrhythmias, PTX, increased early drug absorption.
 - **Activated charcoal**
 - Adsoorbs poisons in GI tract by direct contact and reduces their absorption into the bloodstream.
 - Give 10x dose of poison taken (max 50g) suspended in flat cola, can be given via NGT too.
 - **Ineffective for elemental metals, insecticides, cyanide, acids/alkalis, alcohol, hydrocarbons.**
 - **Complications include aspiration pneumonitis, ↓ therapeutic drug absorption, obstruction.**
 - **Very effective for paracetamol and aspirin** but avoid in ileus, poor gag reflex, unsafe swallow.
 - **Multiple dose activated charcoal**
 - 50g activated charcoal followed by 25g every 2 hours (+ lactulose to prevent constipation).
 - Increases elimination of some drugs from blood e.g. theophylline, quinine, digoxin, phenytoin.
 - **Other methods**: haemodialysis for small molecules, charcoal haemoperfusion of bound drugs.

- **Paracetamol** is the most popular analgesic in the UK and is involved in almost half of all overdoses.
- Leading cause of poisoning mortality (100-200 per year) but overall mortality low (<1%).
- **Mechanism of action**
 - In overdose, the major route of metabolism is saturated and NAPQI production is increased.
 - Glutathione reserves eventually run out.
 - NAPQI accumulates in hepatocytes and reacts with cell constituents to cause cell death.
- **Clinical features**
 - Very non-specific.
 - Early: nausea, vomiting, abdominal pain WITHOUT impairment of conscious level.
 - Delayed features of hepatic necrosis: jaundice, liver pain, liver failure, encephalopathy.
 - Delayed features of renal failure: oliguria, loin pain, hypoglycaemia, metabolic acidosis.

- **Investigations**
 - **Paracetamol level 4hrs post-overdose** is best early predictor of prognosis and determines need for antidote through use of a nomogram.
 - If <150mg/kg is potentially toxic.
 - >250mg/kg makes severe liver damage very likely.
 - >12g total is potentially fatal.
 - Bilirubin >70, PT >100s or rising after day 3, metabolic acidosis, encephalopathy.
 - **LFTs and clotting studies** to assess liver damage and function.
 - U+E and creatinine to assess renal function (urea may remain low due to ↓hepatic synthesis).
 - **Abg** for metabolic acidosis → indicator of severe poisoning.
 - **Poor prognostic indicators**
 - High dose of paracetamol.
 - >150mg/kg is potentially toxic.
 - >250mg/kg makes severe liver damage very likely.
 - >12g total is potentially fatal.
 - Bilirubin >70, PT >100s or rising after day 3, metabolic acidosis, encephalopathy.

- **Treatment: within 1 hour of overdose**
 - **Gastric decontamination with multiple doses of activated charcoal**
 - In very large overdose (>50g) use gastric lavage alongside activated charcoal.
 - **Glutathione** acts as an antidote to NAPQI but value decreases rapidly with time.

- **Treatment: more than 4 hours after overdose**
 - **IV acetylcysteine** is a glutathione precursor which increases the availability of glutathione for binding to NAPQI and may also increase sulphate conjugation of paracetamol.
 - Given IV by three separate infusions over 20 hours.
 - Highly effective up to 8 hours after overdose: value decreases thereafter but there is some beneficial effect for up to 24 hours → basically use at any time after severe poisoning.
 - Complications include anaphylactic reaction in 10-15%, due to dose-related IgA-mediated histamine release from affected cells → reduce infusion rate and give chlorphenamine.
 - **Oral methionine** is a glutathione donor which is less effective and rarely used.
Opiates

- 15% of all overdoses: most common scenario is a heroin addict who used a higher than usual dose, accidentally injected concentrated solution or used heroin after a prolonged period of abstinence
- "Body packers" or "mules" pack their GI tract with bags of heroin for smuggling purposes may rupture
- "Body stuffers" ingest all the drugs on them to hide them from the police, often multiple drugs involved

Mechanism: respiratory depression and coma are usually complicated by hypoxia, non-cardiogenic pulmonary oedema, metastatic infections (often severe in HIV +ve patients), rhabdomyolysis, arrest

Clinical features
- CNS depression and coma
- Respiratory depression
- Miosis → pinpoint pupils
- Tachycardia
- Hypotension
- Complications at injection sites e.g. cellulitis, lymphadenitis, arterial damage, abscess, gangrene
- Complications due to cutting of drugs e.g. valve disease, RHF, lung abscess, talc granulomas

Clinical features
- Hallucinations
- Rhabdomyolysis
- Pulmonary oedema
- "Track marks"

Treatment
- IV naloxone is a competitive inhibitor of opioid receptors which quickly acts as an antidote: it is useful in both diagnosis and treatment of opiate overdose
 - Give enough to maintain airway and breathing but NOT to completely rouse the patient as there is significant risk of self-discharge and subsequent relapse
 - Usually 0.4-2.4mg IV for adults given in small boluses until breathing is satisfactory
 - Short ½ so give 2/3 of the dose required to rouse the patient every hour after that
 - Dangers include withdrawal, self-discharge during alert phase, unmasking of pain, hypertension, altered behaviour, fits and tachyarrhythmias
 - Supportive measures: oxygen, airway management, BBV precautions

Tricyclic Antidepressants

- About 12% of all overdoses, high mortality rate of 100-200 deaths per year

Mechanism:
- Anticholinergic effects
- Block noradrenaline uptake
- Block alpha-adrenergic receptors
- Block Na⁺ channels → cardiotoxic

Clinical features
- Hot, dry skin
- Dilated pupils
- Tachycardia, arrhythmias e.g. VT, VF
- Refractory hypotension

Clinical features
- Urinary retention
- Agitation, delirium, convulsions
- Hypertonia, hyperreflexia
- Coma

Investigations
- Can’t get plasma concentration of drug 😐

Investigations
- U+E for ↑↓K⁺
- Blood glucose
- ABG for metabolic acidosis: pH <7.4 represents ↑↑ risk of arrhythmia
- ECG is very important in diagnosis and monitoring
 - Sodium blockade causes intraventricular conduction delay → widened QRS complexes
 - QRS >160ms (>4 squares) represents high risk of arrhythmia and cardiac arrest

Treatment
- Gastric decontamination within 1 hour: 50g activated charcoal +/- gastric lavage
- Enhance elimination with repeated doses of activated charcoal every 2 hours
- Treat arrhythmias with sodium bicarbonate and K⁺ correction (NOT ANTIARRHYTHMICS)
- Treat fits with buccal midazolam/IV lorazepam/rectal diazepam, consider sedation/paralysis

Aspirin/Salicylates

- 7% of all overdoses
- Acute aspirin overdose has a mortality rate of 2%, chronic has a mortality rate of up to 25%

Clinical features
- Dizziness and hyperventilation
- Sweating and flushing
- Tinnitus
- Vomiting

Investigations
- Plasma salicylate concentration 6hrs post-overdose → repeats in case of delayed absorption
 - >125mg/kg = mild toxicity
 - >250mg/kg = moderate toxicity
 - >500mg/kg = severe, potentially fatal toxicity
- U+E, bicarbonate and ABG
 - Hypokalaemia
 - Direct respiratory stimulation → respiratory alkalosis
 - Then ↑↑ acid salicylate and lactate release 2↑ to ↓↓ tissue perfusion → metabolic acidosis

Blood glucose
- Reduced gluconeogenesis → hypoglycaemia

Treatment
- Gastric decontamination within 1 hour: 50g activated charcoal +/- gastric lavage if v large OD
- Enhance elimination:
 - repeated doses of activated charcoal every 2 hours to drive salicylate back into gut lumen
 - urinary alkalinisation with sodium bicarbonate to increase urinary excretion
 - haemodialysis is indicated in renal failure, acidosis, salicylate >700mg/L, oedema, CNS Sx.

Theophylline

- Overdose is uncommon but serious due to narrow therapeutic index and its use in children
- May be acute (often accidental/intentional) or chronic and precipitated by illness/drug interactions
- Most preparations are slow release

Mechanism
- Catecholamine excess and adenosine antagonism
- CYP450 inhibition increases plasma levels avoid use of cimetidine, erythromycin, etc…

Clinical features
- Sweating
- Vomiting
- Tachycardia
- Tremor
- Coma

Clinical features
- Agitation, fits
- Hyperventilation
- Coma
- Cardiotoxicity and arrhythmias

Investigations
- Plasma theophylline concentration: due to slow release of drug repeat every 2hrs until levels ↓
 - >60mg/L or >4.5g total could be fatal
- U+E for hypokalaemia, blood glucose for hyperglycaemia, ABG for acidosis
- ECG

Treatment
- Gastric decontamination within 1 hour: 50g activated charcoal +/- gastric lavage
- Whole bowel irrigation with polyethylene glycol solution may be indicated in large overdose
- Enhance elimination with repeated doses of activated charcoal every 2 hours
- Charcoal haemoperfusion is indicated for severe poisoning with fits, arrhythmias, coma etc…
- Supportive measures: KCI, sodium bicarbonate, ondansetron for vomiting, lorazepam for fits
Iron

- Iron overdose is one of the leading causes of death by poisoning in children under 6 years: iron tablets are commonly used and are particularly attractive to young children because they look like sweets.
- Can develop chronically in patients receiving frequent blood transfusions e.g. sickle cell, thalassaemia.

Mechanism
- Corrosive toxicity of ingested iron to GI tract → pain, D+V, significant fluid and blood loss
- Cellular toxicity of absorbed iron
 - Inhibition of oxidative phosphorylation → anaerobic metabolism and lactate production
 - Mitochondrial dysfunction and cell death, especially in liver
- This results in hypovolaemia and lactic acidosis

Clinical features
- Early (6hrs): N+V, abdominal pain, diarrhoea or black melaena stools
- Delayed (72hrs): GI symptoms deceptively seem to resolve, drowsiness/coma, CV collapse
- Late (2-4 days): fulminant liver necrosis, renal failure (gastric strictures after 2-5 weeks)

Investigations
- Serum iron level at 4hrs post-overdose then every 2 hours
 - >20mg/kg will cause GI toxicity
 - >60mg/kg will cause severe toxicity and could be fatal
- FBC: ↑ Hb, ↑ WCC, U+E, LFT, clotting, glucose; ↑↑ ABG; acidosis + increased anion gap, G&S

Treatment
- Gastric decontamination within 1 hour if large overdose
 - activated charcoal doesn’t work → gastric lavage, possibly induced emesis
- IM/IV desferrioxamine chelates iron to reduce its toxicity → ferrioxamine is excreted in urine
 - Can cause hypotension and pulmonary oedema
- Supportive measures: IV fluids, analgesia

Ethylene glycol

- Thick and syrupy with sweetish taste
- Found in antifreeze, brake fluid, radiator fluid
- Caused CNS depression, optic nerve toxicity and metabolic acidosis

Clinical features
- 30-12hrs: inebriation, convulsions, coma, metabolic acidosis
- 12-24hrs: ↑ HR, ↓ BP, ↑ RR, pulmonary oedema, heart failure
- 24-72hrs: renal failure and stone formation → calcium oxalate monohydrate crystalluria
- Death from MOF usually occurs within 24-36 hours

Investigations
- ABG + anion gap: (Na⁺ + K⁺) – (Cl⁻ + HCO₃⁻) normal anion gap is 8-12; ↑ by lactic acidosis, ketoacidosis, renal failure, acidic toxins e.g. methanol, ethylene glycol, salicylates, iron

Treatment
- Gastric decontamination within 1 hour: activated charcoal doesn’t work → gastric lavage
- Fomepizole competitively inhibits alcohol dehydrogenase: few side effects but expensive
- Ethanol does the usual, 7 shots! More side effects and can have unpredictable response
- Supportive measures: IV fluids, sodium bicarbonate for acidosis, may need airway support

Benzodiazepines

- Around 15% of overdoses but very low mortality rate unless part of complicated mixed overdose
- **Mechanism**: Potentiate activity of inhibitory neurotransmitter GABA to hyperpolarise membranes, inhibit cellular excitation and cause sedation, anxiety, muscle relaxation...

Clinical features: isolated BZD overdose classically presents as coma with normal vital signs
- Dizziness
- Confusion
- Drowsiness and coma
- Blurred vision and nystagmus
- Slurred speech
- Hypotension

Investigations
- Can measure serum/urine BZDs but usefulness limited as does not detect active metabolites and has no effect on immediate clinical management
- Following intentional overdose obtain FBC, U+E, glucose, LFT, clotting, paracetamol level
- ABG if evidence of respiratory depression
- ECG to rule out TCA involvement

Treatment
- Most important thing is to rule out other drugs first e.g. TCAs, opiates, paracetamol
 - Always worth trying naloxone in patients with CNS and respiratory depression
- Gastric decontamination within 1 hour: 50g activated charcoal +/- gastric lavage
- IV flumazenil is a competitive BZD receptor antagonist which acts as an antidote: Contraindicated in mixed overdose as may precipitate TCA seizures and arrhythmias
 - Use cautiously in chronic BZD users as may precipitate withdrawal and seizures
- Ideal situation for use is an isolated BZD overdose in BZD-naïve patients
- Supportive measures: oxygen, airway management, sodium bicarbonate for acidosis, glucose

Antifreeze

- Methanol
 - Looks like ethanol
 - Found in antifreeze, screenwash, solvents
 - Toxic by ingestion, inhalation and contact
- Very small doses are toxic
 - 10ml can lead to blindness
 - 30ml can be fatal
- Metabolised by liver alcohol dehydrogenase pathway to formaldehyde + formic acid
- Causes CNS depression, optic nerve toxicity and metabolic acidosis

Clinical features
- 30-12hrs: inebriation, convulsions, coma, metabolic acidosis
- 12-24hrs: ↑ HR, ↓ BP, ↑ RR, pulmonary oedema, heart failure
- 24-72hrs: renal failure and stone formation → calcium oxalate monohydrate crystalluria
- Death from MOF usually occurs within 24-36 hours

Investigations
- ABG + anion gap: ([Na⁺] + [K⁺]) – ([Cl⁻] + [HCO₃⁻]) normal anion gap is 8-12; ↑ by lactic acidosis, ketoacidosis, renal failure, acidic toxins e.g. methanol, ethylene glycol, salicylates, iron

Treatment
- Gastric decontamination within 1 hour: activated charcoal doesn’t work → gastric lavage
- Fomepizole competitively inhibits alcohol dehydrogenase: few side effects but expensive
- Ethanol does the usual, 7 shots! More side effects and can have unpredictable response
- Supportive measures: IV fluids, sodium bicarbonate for acidosis, may need airway support

Important Antidotes

- Paracetamol
 - Glutathione relepers e.g. acetylcysteine, methionine
- Opiates
 - Specific receptor antagonists e.g. naloxone
- Iron, heavy metals and cyanide
 - Chelating/fixing agents e.g. desferrioxamine, dimercaprol, sodium thiosulfate, edetate, B12
- Alcohols: methanol, ethylene glycol
 - Alcohol dehydrogenase inhibitors e.g. fomepizole, ethanol
- Benzodiazepines
 - Specific antagonists e.g. flumazenil
- Anticoagulants: warfarin
 - Vit K, prothrombin complex concentrate/FFP
- Digoxin
 - Antibody fragments e.g. Digibind
- Beta blockers
 - Atropine, glucagon bolus with 5% dextrose
- Dapsone
 - Reducing agent e.g. methylene blue
- Organophosphates
 - Cholinesterase activators e.g. pralidoxime
- Snake bites
 - IgG antivenoms e.g. Zagreb antivenom
- Carbon monoxide
 - Oxygen

IF IN DOUBT: TOXBASE
Call NPIS
Common Adverse Drug Reactions

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Adverse Reactions</th>
</tr>
</thead>
</table>
| **NSAIDs** | • GI ulceration and bleeding
 • Cerebral haemorrhage
 • Renal impairment
 • Wheezing/exacerbation of asthma
 • Rash |
| **Diuretics** | • Renal impairment
 • Hypotension
 • Electrolyte disturbances
 • Gout |
| **ACEIs/ARBs** | • Renal impairment
 • Hypotension
 • Electrolyte disturbances |
| **Beta blockers** | • Bradycardia
 • Heart block
 • Hypotension
 • Wheezing/exacerbation of asthma |
| **Warfarin** | • Bleeding |
| **Clopidogrel** | • GI bleeding |
| **Digoxin** | • Toxicity |
| **Opiates** | • Constipation
 • Vomiting
 • Confusion
 • Urinary retention |
| **Prednisolone** | • GI ulceration and bleeding
 • Hyperglycaemia
 • Osteoporosis and fractures |